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Near Optimal Single-Track Gray Codes 
Tuvi Etzion Member, IEEE, and Kenneth G. Paterson 

Abstract-Single-track Gray codes are a special class of Gray 
codes which have advantages over conventional Gray codes in 
certain quantization and coding applications. The problem of 
constructing high period single-track Gray codes is considered. 
Three iterative constructions are given, along with a heuristic 
method for obtaining good seed-codes. In combination, these yield 
many families of very high period single-track Gray codes. In 
particular, for m > 3 , length ‘r~ = 2”, period 2” - 2n codes 
are obtained. 

Index Terms-Gray codes, heuristic methods, inequivalent se- 
quences, necklaces, quantization, recursive construction, self-dual 
sequences 

I. INTRODUCTION 

A LENGTH n Gray code C is an ordered list of distinct 
binary n-tuples (called the codewords) 

having the property that any two adjacent codewords W; and 
Wi+l differ in exactly one component. If this property holds 
for Wr-1 and W, as well, we say the Gray code is cyclic 
with period the number of different codewords P. Otherwise, 
we say the Gray code is acyclic. 

Constructions for Gray codes can be found in [l]-[3], while 
Gray codes have found application in diverse areas including 
coding theory [4], [5] and in the design of combinatorial 
algorithms [6], [7]. Another common use of Gray codes is 
in reducing quantization errors in various types of analog-to- 
digital conversion systems [ 11, [8]. As a typical example, a 
length n, period P Gray code can be used to record the ab- 
solute angular positions of a rotating wheel by encoding (e.g., 
optically) the codewords on n concentrically arranged tracks. 
n reading heads, mounted in parallel across the tracks suffice 
to recover the codewords. When the heads are nearly aligned 
with the division between two codewords, any components 
which change between those words will be in doubt and a 
spurious position value may result. Such quantization errors 
are minimized by using a Gray encoding, for then exactly one 
component can be in doubt and the two codewords that could 
possibly result identify the positions bordering the division, 

When high resolution is required, the need for a large num- 
ber of concentric tracks results in encoders with large physical 
dimensions. This poses a problem in the design of small-scale 
or high-speed devices. Single-track Gray codes were proposed 
in [9] as a way of overcoming these problems. Let C be a 
length n cyclic Gray code with codewords WO, WI, . . . , Wp- 1 
and write Wi = [w:, wt , . . , wn-l], so that FLU! denotes 
component j of codeword i. We call the sequence 

w&w;,... > w$-1 
of period P component sequence j of C. 

Dejinition I: Let C be a length n, period P cyclic Gray 
code. Suppose that for each 1 < j < n, there exists kj with 
0 5 kj < P such that component sequence .i is a cyclic shift 
by kj of component sequence 0, i.e. 

W;rW~,...,W3p~l = w i+g+1,-. A+1 

(where subscripts are reduced modulo P). Then we say that 
C is a single-track Gray code. 

As an immediate consequence, in a single-track Gray code 
Wi is actually equal to 

so that all the components of Wi can be obtained from 
component sequence 0. Thus in the quantization application 
above, the bits of any codeword can be obtained solely from 
a single track corresponding to component sequence 0, if the 
n reading heads are spaced around that single track at fixed 
relative positions 0, ki, kz, . . . , k,-r If a suitable single- 
track Gray code is available, then an encoder can be made 
significantly smaller in size. 

The following necessary conditions on the parameters n and 
P of a single-track Gray code were established in [9]: 

Lemma 2: Suppose there exists a length n, period P single- 
track Gray code C. Then P is an even multiple of n and 

2n 5 P 5 2”. 

Examples of high period codes for small n were given in 
[9], along with a general construction for single-track Gray 
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is required. The codes from Result 1  do not generally offer this 
property, although the result does allow us to obtain codes of 
most periods with reasonable efficiency. It is also of interest to 
determine, for each n, the highest possible period of a length 
n single-track Gray code. It is this question we address in this 
paper, though the constructions we give for high-period codes 
are usually easily adapted to produce codes of a particular 
period. 

In Section II we review some background concepts and give 
a key method in the construction of our codes. The method 
is then applied to give a construction which produces length 
2n codes from length n codes satisfying certain additional 
constraints. The construction can be iterated and beginning 
with some “seed-codes” we obtain several families of high- 
period single-track Gray codes. In Section IV we generalize 
our techniques to give a construction which builds a length 
(Ic + l)n code from a length n code having additional prop- 
erties, for each k 2 2. Again, our method can be iterated 
to produce families of good codes. Section V contains a 
construction method for codes based on self-dual words. The 
method is applied to produce length n, period 2” - 2n single- 
track Gray code for n a power of 2. From Lemma 1, these 
codes are near-optimal. In Section VI, we present a heuristic 
method which produces some optimal codes and some seeds 
for our constructions. We  end with some conclusions and open 
problems. 

II. A BASIC CODE CONSTRUCTION 

We begin by introducing a number of concepts that will be 
useful in the constructions of the following sections. 

We  number the positions in a binary n-tuple (or word) 

x = [x0, Xl, . . . , G-l] 

from left to right by 0 to n  - 1. If W ; and W ;+i are adjacent 
words in a Gray code, then diff (Wi, W i+i) will denote the 
unique position in which they differ. Om denotes a string of 
m  zeros and lm denotes a string of m  ones. The left-shift 
operator E acting on n-tuple X is defined by 

E[~o,m,... ,G-11 = [a,...,%-1,201. 

We will say that two n-tuples X, Y are (cyclically) equivalent 
if EtX = Y for some t. Otherwise, they are said to be 
inequivalent. The set of words in an equivalence class under 
this relation is called a necklace, and we will represent a 
necklace by any of its words. The period of an n-tuple X 
is defined to be the least positive t such that EtX = X. We 
say that X (and the necklace containing X) is full-period if 
it has period n. 

Next we give a construction for single-track Gray codes 
based on a kind of Gray code for necklaces. 

Theorem 4: Let SO, Si, . . . , S-1 be T  inequivalent full- 
period n-tuples and suppose that for 0 5 i < r - 1, Si 
and S&i differ in exactly one position and that for some 
I relatively prime to n, E’S’0 differs from S-1 also in exactly 

one position. Then the words 

so, Sl, . . . c-1, 

@So,  El&, ... E”S,+ 
EzlS 01 EzlS I> . . . E21S - r 11 

E(“-l)lS o, &‘“-l)l&, : . E(-l)$,-l 

constitute a single-track Gray code of length n and period nr. 
The special case I = 1 of the above theorem is due to 

Brandestini. 
Proof Since I is relatively prime to n, the integers 

O,l, 21,. . . , (n - 1)Z are distinct modulo n. It is then ciear 
from the properties of the words SO, Si, . . . , S,-i that the 
list of words in the statement of the theorem do form a 
cyclic Gray code. We  need only show that this code has 
the single-track property. Suppose the words SO, Si, . . . , S,-1 
are written in a vertical list to form an T  x n binary ar- 
ray. Let Ca,Ci,... , C,-i be the columns of this array. 
Then it is easy to see that component sequence j of the 
code is Cj, C,+l, Cj+zl, . . . , Cj+(,-ijl (with subscripts mod- 
ulo n), formed by concatenation of the columns. In partic- 
ular, component sequence 0 is just CO, Cl, Cal, . . , C(,-l)l 
and contains all the columns in some order. Now, since 
1 and n are relatively prime, for every j we have j = 
tj 1 mod n for some tj . Then component sequence j is the se- 
quence G,z, G,z+z, G,~+z,. . . , Ctj~++lp which is simply 

the shift by tjlr = jr of component sequence 0. Hence the 
code is single-track. 0 

Example 1: The list of words [OOOOl], [OOOll], [10011], 
[llOll], [llOlO], [lOOlO], satisfies the hypotheses of Theorem 
1 and lead to a length 5, period 30 single-track Gray code 
with component sequence 0 equal to 

60, 1, 1, 1,1,0,0,0,1,L o,o, o,o, o,o,o, 0, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 0,o. 

This is the length 5 code presented in [9]. 

III. A CONSTRUCTION BASED ON NECKLACES 

We will give a construction which begins with a Gray code 
on inequivalent words of period n, with certain properties, 
and produces a Gray code on inequivalent words of length 
2n, with the same properties. By iterating the construction on 
seed-codes and using the codes which result in Theorem 1, 
we will obtain families of single-track Gray codes of length 
2”n with high periods. 

Let x(n) denote the set of 2”-l words of the form 

Lemma.5:  Suppose S = {Sa,Si,...,Sr-l} is a set of r 
inequivalent full-period n-tuples, each one ending with a one. 
Then the set 

{[X, X + Si] : 0  L  i <  r, X E x(n)} 

consists of 2n-1r inequivalent words of period 2n  having a 
zero in position n  - 1  and a one in position 2n - 1. 
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Proof Assume X,X’ E X(n) and [X,X + $1 is 
equivalent to [X’, X’ + Sj]. So E”[X, X + S;] =  [X’, X’ + Sj] 
for some 0 5 c < 2n. Now 

(E” + l)E”[X; X + $1  = [Psi, ECSi] 

while 

(E” + l)[X’, X’ + S,] =  s,, $1. 
But for i #  j, Si and Sj are inequivalent, so we must have 
i = j and Si = EC&. But Si is a full-period word, so we 
can deduce that either c = 0 or c = n. If c = 0 we see that 
X = X’ also, so we must have c = n. But then we have 
[X + Si, X] = [X’, X’ + S;] which is impossible since X + S; 
ends with a one and X’ ends with a zero. The observation 
that we obtain 2”-l r inequivalent period 2n  words in which 
there is a zero in position n - 1  and a one in position 2n - 1 
follows immediately. 0  

The next lemma is immediate. 
Lemma 6: If SO,&,... , S-i is a cyclic Gray code then 

for X E X(n) 

[X, x + So], [X, x + Sl], . , [X, x + SF-11 

is a cyclic Gray code. 
The next lemma will be useful in merging one Gray code 

into another. 
Lemma 7: If X, X’ E X(n) differ only in position d and 

So, S1, . . j S-1 is a cyclic Gray code in which Si and Si+l 
differ in position d  then 

[X, x + Si], 
[X’, X’ + si+1 

[X’, X’ + ST-1 
[X’,X’+ Sol.” 

[X’, X’ + Si], 
[X,X + &+,I 

is a cyclic Gray code. 
Proof If S’i and Si+i differ in position d  and X and X’ 

differ in position d then [X, XS S;] and [X’, X’S Si+i] differ 
only in position d. Similarly, [X’, X’ + $1 and [X, X + $+I] 
differ only in position d. q 

Construction A 
Assume So, Si, . , S-1 are T  inequivalent full-period n- 

tuples, n > 7, with the following four properties: 

Al. For each i, Si and S.i+i (subscripts taken modulo r) 
differ in exactly one position. 

A2. Let VD, = {diff (Si, Si+l) : 1  5 i < T  - 2). Then 

Vn = {O,l;..,n-2). 

A3. Position n  - 1  in each Si is a one. 
A4. Sr-2 = [on-s1 111, S-1 = [O~-soll],Sa = 

[0”-30 0 I], si = [on-s1 0 I]. 
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Example 2: For n = 7, the 18 full-period necklaces can be 
ordered as follows to satisfy these properties: 

so = [0000001] ss = [0110101] 
si = [0000101] sio = [0110111] 
s2 = [0001101] s11 = [0100111] 
s3 = [0001001] si.2 = [0100101] 
s4 = [1001001] s13 = [1100101] 
ss = [1011001] s14 = [1000101] 
ss = [1111001] si5 = [1000111] 
ST = [1111101] sifj = [0000111] 
ss = [0111101] si7 = [0000011] 

We  list the elements of X(n) in an order 

such that for each i > 1, Xi differs in exactly one position 
from some word appearing earlier in the list, i.e., from some 
Xj with j < i. We  assume that X0 = [O”]. We  proceed by 
generating the 2+l cyclic Gray codes guaranteed by Lemmas 
5 and 6. We  label the code corresponding to word Xi by Xi. 
We  will merge these a”-’ cyclic Gray codes one by one into a 
main code using Lemma 7. We  take as the initial main code the 
cyclic Gray code Xa. Assume that the codes Xi, X2, . . , Xl-1 
have been successively inserted into the main code. We  will 
show that Xl can also be inserted into the main code. 

Now there exists a word Xj with j < 1 such that Xj and Xl 
differ in exactly one position, d  say, and there exists a pair of 
words Si and Si+r that also differ in exactly position d, where 
1 5 i < T  - 2. We  claim that the words [Xj, X, + $1 and 
[X,, Xj + S;+r] still lie adjacent in the main code. For if not, 
then some code X, (m # 1) must have been inserted between 
them. This only occurs if Xj and X, differ in exactly position 
d. This in turn implies that Xl = X,--a contradiction, since 
these words are distinct. Therefore, we can insert a  cyclic 
shift of the listing of the words of the code Xl between the 
words [Xj, Xj + $1 and [Xj, Xj + Si+i] using Lemma 7, 
extending the main code. 

Executing this process beginning with Xi and ending with 
X2+ 1 -i, we finally obtain a cyclic Gray code of period 2+ir. 

Observe that in the above procedure, we never insert the 
words of X; between words 

of the earlier code Xj . Thus for each X E X(n), the words 

[X, x + s-21, [X, x + s-11, [X, x + Sol, [X, x + Sll 

will always be consecutive in the final code. In particular, we 
see that the final two and first two words in the code are just 

[O”, on + sr-s] = [02”-31111 
[on, 0” + ST-l] = [02”-soll] 
[on, 0” + So] = [02”-3001] 
[on, 0” + Sl] = [02”-3101] 

so that the new code has property A4. Properties Al and A3 are 
satisfied as an immediate consequence of the construction and 
Lemmas 5, 6, and 7. Clearly from Lemma 7 and the construc- 
tion,wehaveDs,={O,l,~~~,n-2,n,n+1,~~~,2n-2}. 
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To satisfy Property A2, we-need to modify the code so that 
D2n also contains n  - 1. Taking X = [110”-2], we use the 
above observation again to see that the final code will have 
as four consecutive words 

[X,X + s,-21 = [110~-2110~-s111] 
[X,X + s,-i] = [110~-2110”-s011] 
[X, x + Sol = [110~-2110”-50011 
[X, x + Sl] = [110~-2110”-5101]. 

On the other hand, taking X’ = [lOn-l], we obtain as 
consecutive words 

[X’, X’ + sr-21 = [10”-2010”-4111] 
[X’, X’ + s,-11 = [10”-2010”-4011]. 

Now [X, X + S,-a] and [X, X + Si] differ only in position 
2n - 2 while the sequence of words 

[X’, X’ + S-21 = [10”-2010”-4111] 
E[X, X + S,-l] = [10”-2110n-4111] 
E[X, X + So] = [10”-2110”-4011] 
[X’, X’ + s,-i] = [10~-2010”-4011] 

form a Gray code. Thus we can remove words [X, X + S-i] 
and [X, X + SO] from the code and reinsert their shifts between 
[X’, X’ + S,-2] and [X’, X’ + S.-i], maintaining Property 
A3, to obtain a cyclic Gray code of inequivalent words with 
zxJn = (0, 1,. . . ). . . ,2n - 2}, i.e., with Property A2. 

Then we have: 
Theorem 8: Suppose there exists a cyclic Gray code of 

length n, n  > 7 and period r with Properties Al to A4. Then 
there exists a cyclic Gray code of length 2n and period 2+‘r 
with the same properties. 

Beginning with the “seed-code” of Example 2 and iterating 
the use of Construction A we obtain, for each k~ 2 1, a 
length 7 . 2’“, period 18 . 27(2k-1)-k Gray code consisting of 
inequivalent words with first word [07’2k-11\ and last word 
[07.2’-211]. Notice that E[07’2k-11] and [07.2 -211] differ in 
exactly one position. We  can therefore apply Theorem 4 to 
obtain a family of single-track Gray codes of length 7. 2k and 
period 18 .7. 27(2k-1) = g . 27’2k. This period is a very high 
(and constant) fraction of the upper bound from Lemma 2. 

We  will show in Section VI that there also exist seed-codes 
with 56 full-period necklaces for n  = 9 and 96 full-period 
necklaces for n = 10. Using these in the same way as the 
length 7 seed above, we can construct a family of length 9.2’“, 
period $$ 2g.2” single-track Gray codes and a family of length 
10 . 2”, period g . 210’2k single-track Gray codes. 

IV. AN EXTENDED CONSTRUCTION 

In this section we extend the technique of Construction A 
to give a construction method which begins with a Gray code 
on inequivalent words of period n, with certain properties, 
and produces a Gray code on inequivalent words of length 
(k + l)n, with the same properties for k 2 2. By iterating the 
construction on seed-codes and using the codes which result in 
Theorem 4, we will obtain families of single-track Gray codes 
of lengths a multiple of n  with high periods. 

We  begin with a suitable analog of Lemma 5. Suppose that 
k > 2 and that X and Y are disjoint sets of n-tuples. We  
write 1x1 = s and ]Y] = t. 

Lemma9:.  Let S = {Sa,S1,...,Sr-i} be a set of r 
inequivalent full-period n-tuples. Then the set 

consists of r. 3. t”-l inequivalent full-period (5 + 1)n -tuples. 
Proof Assume that X,X’ E X, Yi,Y/ E Y (0 I i < 

k - 2) and that 

E”[X, Yo, . . , yk-2, x +  fi +  . ’ +  Yk-2 + $1  

= [X’, Y;, . . . ) YLe2, X’ + Y; +  . . . +  PjA2 + Sj] 

for some 0 5 c < kn. Then, similarly as in the proof of 
Lemma 5, we apply the operator E’“” + . . . +  En + 1 to each 
of these words to see that E’S; = Sj. Since the words of S 
are inequivalent and have period n, we see that i = j and 
c = Omodn. We  write c = In for some 0 5 1 5 Ic. If I = k, 
we see immediately that X = YJ, a contradiction since the sets 
X and Y are disjoint. If 1  5 2 < Ic then we have X’ = x-1, 
again contradicting the disjointness. So we must have 1 = 0, 
and hence c = 0. Thus X = X’ and Yi = Yi for each i, and 
the Lemma follows immediately. 0  

The next lemma is immediate. 
Lemma 10: If Sa,Si,... , S,-i is a cyclic Gray code then 

for X E X and Yi E y (0 5 i 5  k~ - 2), the list of words 

[X,~,‘..,Yk-2,X+~+“‘+Yk-2+SO] 

[X, yo, . . . , yk-2, x +  fi +  . ’ +  yk-2 +  &] 

[X, yo, . . . , yk-2, x +  fi +  . ’ ’ +  yk-2 +  ST-~] 

is a cyclic Gray code. 
Now we give a lemma which will be useful in merging Gray 

codes in the constructions to follow. The proof is similar to 
that of Lemma 7. 

Lemma 11: Suppose that for some 0 5 j 5  Ic - 2, 
Yj, Y/ E Y differ only in position d  and X E X 
and Yo,...,Yj-l,Yj+l,..., Y&-s E Y are arbitrary. Let 
SO,Sl,... , S-1 be a cyclic Gray code in which Si and ,‘&+I 
differ in position d. Then the list at the top of the following 
page is a Gray code in which the first and last pairs of words 
differ in position d  + (j +  1)n. 

Of course, a similar result to that above holds for pairs 
X,X’ E X which differ in exactly one position. 

Construction B 
.Assume SO, S1, . . . , S-1 are r inequivalent full-period n- 

tuples, n 2 7, with the following properties: 

Bl. For each i, Si and ,‘!&+I (subscripts taken modulo r) 
differ in exactly one position. 

B2. Let D, = {diff (Si, $+I) : 0  5 i < r - 1). Then 

Vn = (0, 1, . . . , n  - I}. 

B3. So = [lo+l], S,-1 = [10”-21]. 
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[X,Yo ,“‘) yj,..., yk-2, x +  fi +  ‘. +  5  +  . . +  yk-2 +  $1  

[X, yo, . . . , Yj’, ‘. . ) Yk-2, x +  Yo + . . ’ +  yj’ +  . . ’ +  Yk-2 +  s;+l] 

[x, &, . , y,, . . , Yk-2, x +  YO + ‘. ’ + yj’ + . . +  Yk-2 + ST-l] 
[X,Yo ,..., yjl,..., Yk-2,X+Yo+...+Y,+f..+fk-2+S~] 

[Xl xl,. . . 1  Yjl;.‘,Yk-2,X+YO+‘..+Y~+“‘+Yk-2+Si] 
[X,YO,..‘,Yj,..., Yk-2, x + YO + . ‘. + yj + “. + &--2 + si,,] 

Suppose further that X = Xu,Xi,...,Xs-l and y = 
yo,K,..., Yt-r are a pair of disjoint Gray codes of length 
n with the following properties: 

B4. Let 

En = {diff (Xi,Xi+i) : 0  5 i < s - l} 
Fn = {diff (Y;, yi+1) : 0  5 i < t - l}. 

Then 

E, = .Fn = (0, 1, . . ’ ) n  - l}. 

B5. Xc = [lo”-l] and Ya = [0”] . 
Then we show that all the distinct length (k + 1)” necklaces 
resulting from Lemma 9 can be arranged to form a Gray 
code satisfying Properties Bl to B3. We  will go on to show 
how to construct pairs of codes X and Y simultaneously 
having Properties B4 and B5 and maximizing the period of 
the single-track codes resulting from Theorem 4. 

For each X E X and (k - l)-tuple 

(Wo, Wl,. . . ,wk-2) E yk--l 

we form the length (k + 1)” cyclic Gray code 

c(x, WO, wl, ” ‘3 wk--2) 

with words 

[X,~O;“,~k-2,X+~O+...+~k-2+S~] (0 5 i < r) 

using Lemma 10. By Lemma 9, the s tkpl codes of period 
T  obtained in this way are disjoint and consist of inequivalent 
full-period words. We  will merge these codes into a main 
code using Lemma 11 in a way that is similar to that used 
in Construction A. Initially, we take our main code to be 
qxo, 6, yo, . . . ,Ya), whose first and last words are 

[xo,Yo,~~~,Yo,xo+Y~+~‘.+Yo+s~]=[lo~”+~~”-~o] 

Now Yu and Yl differ in exactly one position, d say, and 
by Property B2 and Lemma 11 we can insert a  cyclic shift 
of code C(Xa, Yu, . , Ye, Yi) into the main code, without 
disturbing its first and last codewords. The inserted words 

constitute a list which, from Property B2, contains adjacent 
words differing in exactly position nk + d  for each 0 < 
d  < n. Using arguments similar to those in Section II, 
each of the codes C(Xa, Yu, . . . , Ya, Yi) can be successively 
inserted into the main code, the last insertion being of code 
C(XO,yo,~~~, Ye, Y,-1). Now since Ya and Yl differ in 
exactly one position, we can insert C( X0, Ya, . . . , Ya, Yi , Y,-1) 
followed by codes 

into the main code. Then we continue by inserting code 
C(Xa,Yo,..~,Yo,Y2,Y0), etc. It should be clear how this 
process can be continued to insert all the codes 
C(X,~O,~l,..., wk-2) into the main code, while leaving 
undisturbed the first and last codewords. Notice that our 
choice of insertion order for the codes corresponds to the 
ordering of the words of 2, x 2t-l as a Gray code. 

The final code of T. s. t”-’ inequivalent full-period (k: + l)n- 
tuples clearly satisfies Properties B 1 and B3. We  need to verify 
Property B2. This is a simple consequence of the remarks 
about the first and last pairs of words in Lemma 11 and 
Property B4 of the codes X and Y. 

In order to apply this construction, we need to prove the 
existence of pairs of Gray codes having Properties B4 and B5. 
We  also wish to maximize the number of necklaces in the final 
code. Clearly, we should take s + t = 2n to include all length 
n words in the sets X and y. In this case, we have: 

Theorem 12: Suppose n > 3 and n + 1 5 s 5 2n-1 . Then 
there exists a pair of disjoint length n Gray codes X and Y 
with 1x1 = s and ]y] = 2” - s which satisfy Properties B4 
and B5. 

To prove the Theorem, we need the following: 
Construction C 
Let C2 be the length 2 cyclic Gray code with words 

[111, [lO I> POI, W I. 

For n > 3, we recursively define a length n, period 2” cyclic 
Gray code C, as follows: let the words of C,-l be 
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Then we take as the words of C, the list 

[W2”~1-1,01 

[W2”-1--1> 11 

[Wl, 11. 
A simple inductive argument shows that C,, a variant of the 
standard binary-reflected Gray code, has the property that its 
first n + 2 words are 

wo = [l”] 
Wl = [l”-lo] 
w2 = [lw)2] 

wn-1 

W, 
1 [;;-‘I 

W n+l = [o;oy. 

Proof: (of Theorem 12) Suppose n + 1 5 s 5 2”-l 
and let C, = Wo, WI, . . . , Wzn - 1 be constructed according to 
Construction C. The set of words CL = X0, X1, . . . , X2”-1 
with 

xi = EW; + [lo”-11 

also form a cyclic Gray code with X, = [lo”-l] and 
X n+l = [On]. We take 

‘-7 = Xn,Xn--l,‘..rXO,X2”-1,...,X2n+n--s+l 

and 

Y = L+1, &x+2 >‘. . . , &n+n--s. 

Clearly X and Y are disjoint Gray codes while X contains s 
words and begins with [lone11 and Y contains 2” - s words 
and begins with [O”]. We need only check that Property B4 
holds for X and y. This is clear for X from its construction 
from C, and then follows automatically for y from the fact 
that Y contains at least half of all words of length n, those 
words being the words not in X. 0 

Combining Construction B with Theorem 12, we have: 
Theorem 13: Suppose there exists an arrangement of r 

inequivalent full-period n-tuples, n 2 7, satisfying Properties 
Bl, B2, and B3. Suppose further that 

n+ 15 s 5 2+l. 

Then there also exists an arrangement of 

T . s . (2n - s)k--l 

inequivalent full-period (Ic + l)n-tuples satisfying the same 
properties. 

It is a simple exercise to show that either the choice 
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maximizes the number of necklaces T . s . (2” - s)‘-l in the 
above theorem. In order that the conditions of Theorem 12 be 
satisfied, however, we must have n + 1 < s 5 2n-1 which 
leads to the restriction that 

The number of necklaces obtained from 
s are then roughly 

the above choices of 

r. ck - l)“-l . 2nk 

k” . 

Notice that by virtue of Property B3, the codes in Theorem 
13 can be used immediately in Theorem 4 to produce length 
(k + 1)n single-track Gray codes of period roughly 

We will give a method for obtaining seed-codes in Section VI, 
but for now we illustrate the power of our construction with 
an example. 

Example 3: For n = 7, there exists an arrangement of all 
18 full-period necklaces satisfying Properties Bl to B3: such a 
code can be obtained from the code of Example 2 by applying 
E2 to the word SO and El to Siz to obtain a code satisfying 
Property B2, then reversing all the codewords and applying 
E2 to each word to ensure Property B3. 

Now 151 = 16 and so we can obtain codes of lengths 
7(k + 1) for 2 5 5 5 16. All these codes will have Properties 
Bl to B3. Taking k = 2, we obtain a code of 18.212 length 21 
necklaces, which on applying Theorem 4 gives a single-track 
Gray code of length 21 and period $$ . 221, roughly three- 
quarters of the maximum period allowed by the necessary 
conditions. Taking Ic = 8, we will finally obtain a length 63, 
period 0.435 . 263 single-track Gray code. 

Note that if we do not require a construction which can be 
iterated, then Property B2 is not needed for the final code. In 
this case, we can relax the condition on s in Theorem 13: we 
need only that X and Y be disjoint Gray codes containing the 
words [lo”-l] and [10n-21], respectively (so that Theorem 
4 can be easily applied). Length (K + 1)n codes of period 
(k+ l)n.7-~(2~ - s)‘-’ can then be obtained for every k > 2 
and 1 I: s 5 2n - 1. 

V. A CONSTRUCTION FROM SELF-DUAL WORDS 

In this section, we will give a construction for length n 
codes based on self-dual words of length 2n. This generalizes 
the examples for n = 6 and n = 8 given in [9]. 

A word S is self-dual if S = [X,x] for some X. Clearly, 
for any i, EiS = [Y, y] for some Y. Hence we have the 
following lemma. 

Lemma 14: Let Si and Sa be two inequivalent full-period 
self-dual 2n-tuples. Then 2n distinct n-tuples appear as subse- 
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quences of consecutive bits in each of 5’1 and 5’2, while none 
of the n-tuples appearing in S1 appear in 5’2. 

Lemma 14 leads to the following idea for constructing 

C2. Let diff*($, S;+i) denote the first position in which 
5’; and $+I differ and let 

single-track Gray codes. Let So, 5’1, . . . , S,-1 be T  inequiv- 
alent full-period self-dual 2n-tuples. We  write Si = [Xi, X;]. 
Assume further that for 0 < i < T  - 1, Si and Si+i differ 
in exactly two positions (one between Xi and Xi+1 and one 
between Xi and Xi+l), and that for some j relatively prime to 
2n, EjSo differs from ,!?,-I also in exactly two positions. Let 
si = [sp, *d, . , . , sy-1 ] and denote an n-tuple of consecutive 
bits of S; bv 

D, = {diff*(Si: $+I) : 0  5 i < T  - 2). 

Then 

D, = {O,l, . . ,n - l}. 

C3. E(S,-2) differs in exactly two positions from SO. Y , 
FjS. zz [s! .$+l . . , j+n-1 

z 1)2 3 , si 1 
(where the superscript is taken modulo an). Then we have the 
following result, whose proof is analogous to that of Theorem 
4. 

More precisely, we require 

ST-Z = [0”-410001”-40111] 
ST-1 = [0”-410011”-40110] 

so = [0”-400011”-41110]. 

Theorem 15: The words 
F”So, F”S1, . . . F’S,-I, 
Fj&, Fj&, . . . FjS,-1, 
F2j S 0, F2jS 1, .‘. F2jS,- 11 

F2”j s n, F2”jS,, . . . F2”jS,-1 

Example 4: For n = 8, the 16 self-dual words of length 16 
are ordered below so that Properties Cl to C3 hold 

so = [0000000111111110] ss = [1111000100001110] 
s1 = [1000000101111110] ss = [1101000100101110] 
s.2 = ~1000001101111100] &a = ~1101100100100110] . 

constitute a single-track Gray code of length n and period 2nr. s, = [1lo0001iooi1i10oj sll = [oioiiooiioioo11o] 

We  will now present a recursive construction based on s4 = [1100011100111000] s12 = [0101100010100111] 

Theorem 15.LetSa,Sl,..., S,- 1  be the set of all inequivalent ss = [1101011100101000] s13 = [0100100010110111] 

full-period self-dual words of length 271 and let Y(n)‘denote ss = [1101010100101010] 554 = [0000100011110111] 

the set of 2n-1 elements consisting of the 2n-1 - 1  words of ST = [1111010100001010] s15 = [0000100111110110] 

the form [l, ~1, . , yn-l], where at least one of the y;‘s is a 
zero, together with the word [On]. For each S = [X, X] of Lemma 17: For any Y E y(n) the list of words 
length 2n and for every Y E y(n), let 

sy = [Y,X+Y,Y,X+Y]. 
S(Y) = (SO)Y, (&)Y I. . .1 (Sr-1)Y 

Similarly to the proof of Lemma 5 and the proof of [lo, satisfy Property Cl. 
Lemma 11, we have the following lemma: Proof If Xi and Xi+i differ in exactly one position then 

Lemma 16: The set of words so do the words [Y, Xi + Y] and [Y, X;+i + Y] . 0  
r-1 Lemma 18: If Y and Y’ differ in exactly position d  and 
u &(n) diff* (Si, $+I) = d then the list of words 
i=o 

where (Si)Y, (Si+l)Y’, (si+2)Y’;.. , (%l)Y’, 

&(n) = U  (sily 
(SO)Y’!..., (Si)Y’, (Si+dy 

ye(n) 

contains 2n-1r inequivalent self-dual words of length 4n. 
We will continue with our construction, but restrict our- 

selves to n  which are a power of 2 since, as will be proven 
later, our construction for these n  is optimal by this method. 
A similar construction based on essentially the same idea can 
be given for other values of n. 

If n  is a power of 2, then there are T  = 2n/2n inequivalent 
full-period self-dual 2n-tuples and these contain all the n- 
tuples as subsequences. Assume that SO, Sr , . . , S-1, the set 
of all inequivalent self-dual words of length 2n, are arranged 
so that the following three properties hold: 

Cl. For each i, Si, and Si+r (subscripts taken modulor) 
differ in exactly two positions Ic and K + n  (subscripts 
taken modulo an). 

satisfy Property Cl above. The first and last pairs of words 
differ only in positions d and d + 2n, while for every 7~ < 

d’ < 2n, some pair of consecutive words in the list differ only 
in positions d’ and d’ + 2n. 

Proof: If S; = [X;, xi] where Xi and Xi+1 differ 
exactly in position d and Y and Y’ also differ in exactly 
position d, then Xi + Y = X;+1 + Y’ and [Y, Xi + Y] 
and [Y’, Xi+.1 + Y’] differ exactly in position d. Similarly, 
[Y’, Xi + Y’] and [Y, Xi+1 + Y] differ exactly in position 
d. The statement about positions n  up to 2n  - 1  follows 
from the construction of the words (Sj)lT, and Property C2 
ofSa,Sr;..,S,-1. cl 

Lemma 19: If the set of self-dual words of length 2n  = 
2m+1 can be arranged so as to satisfy Properties Cl to C3, 
then so can the set of self-dual words of length 4n. 
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Proof We start by forming the list of words S(Y) for 
each Y E y(n), as in Lemma 17. Next, we merge these 
lists S(Y) using Lemma 18 in a similar way as we did in 
Construction A. We  order the words of y(n) as follows: 
we take Yc = [On], Yj = [IjO”-j], 1  5 j 5  n - 1, and 
Y, = [10np2 11. Then we order the remaining words of Y(n) 
so that each Yi differs in exactly one position from some Yj, 
j < i. Notice that for 1 5 j < n, Yj differs from Yj-i in 
position j - 1, while Y, differs from Yi in position n - 1. 

We  take as the initial main list S(Yc). Assume that the lists 
W I), W2), . . . , W-1)  h  ave been successively inserted 
into the main list. We  will show that S(Yl) can also be 
introduced. 

Now there exists a word Yj with j < 1 such that Yj 
and Yl differ in exactly one position, d  say, and, for some 
0 < i < r - 2, there exist a  pair of words Si = [Xi, xi] and 
%+1 = [X;+1,xi+i] such that X; and X;+r also differ in 
exactly position d. We  claim that the words 

Theorem 20: For every m 2 3, there exists an arrangement 
of the self-dual words of length 2n = 2mi-1 satisfying 
Properties Cl to C3. 

For m 2 3 and n = 2m, let the list of words in Theorem 20 
be Sc,Sr,... ,Sr-1, where of course r = 2n/2n. Consider 
the list Sc,Si,..., S,-2. Now for each 0 5 i < r - 2, 5’; 
and $+I differ in exactly two positions, while ES,-2 differs 
in exactly two positions from Sa. Thus Theorem 15 applies 
(with j = 2n - 1) to show: 

Theorem 21: If n  is a power of 2, n  > 8, then there exists 
a single-track Gray code of length n  and period 2” - 2n . 

Next we will prove that the single-track Gray codes obtained 
in Theorem 21 are optimal if we use the construction given in 
this section, i.e., we will prove that there is no arrangement 
SO,Sl,... ,$-I, r = 2n/2n such that 

1) Si and ,$+I (subscripts taken modulo r) differ in exactly 
two positions. 

2) EjSo differs in exactly two positions from S’--1, for j 
relatively prime to 2n. 

It is known from [l l] that there is a one-to-one mapping 
from the set of all self-dual words of length 2n to the set 
of all necklaces of length n and odd weight. This mapping, 
D = E + 1, maps a self-dual word 

still lie adjacent in the main list. For if not, then some list 
S(Ym) (m # 1) must have been inserted between them. This 

[SO>Sl>... ,~,-1,~0,~1,~~~,~,-11 

only occurs if Yj and Y, differ in exactly position d. This in 
turn implies that Yr = Y,---a contradiction, since these words 

to the odd weight necklace 

are distinct. Therefore, we can insert a  cyclic shift of the code 
S(K) between the words [so + a> Sl + %, . . . , sn-1 + so] 

and 

while its inverse D-l maps an odd weight necklace 
[to,tl,.‘. , t,-11 to the self-dual word 

using Lemma 18, extending the main list. 
Executing this process beginning with S(Yr) and ending 

with S(Y2npl--1), we obtain a list of all 2+‘r inequivalent 
self-dual words which obviously satisfy Property Cl. 

Observe that in the above procedure, we never insert any 
words in positions between the last two words and the first 
word of the initial list S(Yc). These three words are 

Thus these words remain the last two words and first word of 
the final list, so that the final list satisfies Property C3. 

Examining the last list inserted, we see that Lemma 18 
guarantees that there are pairs of consecutive words in the 
list which differ in positions n  up to 2n - 1. Moreover, from 
the choice of words Yo, . . . , Y, and Lemma 18, there are pairs 
of consecutive words in the list which differ in positions 0 up 
to n - 1. Hence Property C2 holds. 0 

An immediate consequence of Example 4 and Lemma 19 
is the following theorem: 

[ 

n-2 

O,to,to+tl;~.., pi, 
i=o 

n-2 

1,l + to, 1 + to + t1,. . . ) 1+Ct,. 1  
i=o .I 

Using the mapping D and its inverse, we deduce that the 
required arrangement SO, Si, . . . , S-1 is equivalent to an 
arrangement of all the odd weight necklaces TO, T1, . . . , TT--l 
satisfying 

1) Ti and Ti+l (subscripts taken modulo r) differ in exactly 
two adjacent positions. 

2) EjTo differs in exactly two adjacent positions from 
TV-l, for some j relatively prime to 2n . 

Lemma 22: There is no arrangement of all the odd weight 
necklaces having Properties 1 and 2 above. 

Proof First note that Ti and T;+l differ in one even 
position and one odd position and hence, since r - 1  is odd, 
TO and TT-l differ in an odd number of even positions and in 
an odd number of odd positions. The same is true of To and 
EjTo since j, being relatively prime to 2n, is odd. Thus EjTo 
and TT-l differ in an even number of even positions and in 
an even number of odd positions. Therefore EjTo and TV-l 
cannot differ in exactly two consecutive positions. 0 
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VI. HEURISTIC METHODS 

Our recursive methods for generating single-track Gray 
codes require seed-codes So, S1, . . . , S,-1 of small lengths 
and having the various properties required in Constructions A 
and B. If the length n is such that the number of full-period 
necklaces 

is small, then seeds can be found by hand, as in Example 2. 
But if the number of full-period necklaces is large we need 
the aid of the computer. We  have developed a simple greedy 
algorithm which gives excellent results. First, we take from 
each necklace the cyclic shift which is the least as a binary 
number to be the representative of the necklace. Then we list 
all these representatives in lexicographic order from least to 
greatest. From the results of [12], there are always at least 
as many full-period odd-weight necklaces as full-period even- 
weight necklaces. We  form a list c(n) by taking in the same 
order all the even-weight necklaces and an equal number of 
odd-weight necklaces. Again, from [12], there are 

din 

full-period necklaces of even weight, where 

and so L(n) has size 

If we can rearrange L(n) to form a list satisfying the hypothe- 
ses of Theorem 4, then we can obtain a code of length n that 
has optimal period by this necklaces construction. Likewise, if 
we arrange ,C( n) to form lists satisfying the properties required 
in Constructions A or B, then we will have optimal seeds for 
those constructions. 

To this end, we apply the following algorithm to L(n): 
Algorithm A 
Let 5’0 be the word [On-ll], which is the first word in L(n). 

Assume we have a sequence So, S1, . . . , 5’1, such that S; and 
Si+l (0 5 i < k) differ in exactly one position. We  find Sk+1 
as follows: 

1) Find the first word S in L(n) which is not one of the 
Si’s and such that SI, and E”S differ in exactly one 
position, for some m. Take Sk+1 = E”S. 

2) If no such S exists, then find the largest 1 < k - 1  such 
that 5’1 differs in one position from E”Sk, for some m, 
and let 

s&s;,-.,sg 
= s,,..., Sl, EmSI,, EmSk-l, . . . , EmSi+l. 

Return to step 1) with this sequence of necklaces to find 
%,l. 

TABLE I 
BEST KNOWN LENGTH n SINGLE-TRACK GRAY CODES 

(First column: Length 12. Second column: Number of necklaces in 
L(n). Third column: Period of resulting single-track Gray code.) 

n Number of Necklaces Period of 
in C(n) Resulting Code 

9  56  504  
10 96  960  
11 186 2046  
12  330  3960  
13  630  8190  
14  1152  16128  
15 2182 32130  

If Algorithm A terminates with a list of necklaces con- 
taining all the words of L(n), then we have a Gray code 
So, 5’1, . . . , S,-1 where, in general, the weight of ,$.-I is even 
but greater than 2. We  apply a further step similar to step 2) 
above to obtain a cyclic code: 

3) If the weight of S,-l is greater than 2 then find the least 
1 such that the weight of Sl+l is 2 less than the weight 
of S,-1 and Sl differs in one position from EmS,-l, 
for some m. Let 

s&s;,-.,s~~, = So,. . , Sl, EmST-l,. . , Em&+1 

and continue step 3) with this sequence of necklaces. 
If step 3) finishes successfully, then we have a cycle 

so, Sl, . . . , ST-l with 5’0 of weight 1 and S,-1 of weight 
2. Obviously, there exist two integers ml and m2 such that 
EmlSo and E”zSO differ in exactly one position from $-I. 
If either ml or m2 is relatively prime to n then Theorem 4 can 
be applied to give a single-track Gray code that is optimal by 
construction from necklaces (cf. the bound in [9, Section VI]). 
Notice that we will have So = [On-’ l] and 5’1 = [O”-2 111, 
so we could take So = [0”-210] to increase the chances that 
one of ml or rn2 is relatively prime to n; the same is true of 
many other adjacent pairs S,, $+I. 

We  have applied this heuristic method starting from n  = 7; 
as described, it is successful for n  = 7,9,10,11,13. For other 
values of n we have introduced a nondeterministic element 
into Algorithm A by choosing 1 randomly in steps 2) and 
3). This quickly lead to codes for n  = 8,12,14,15. We  did 
not consider n > 15, but we believe that the results would 
be similar. Applying Theorem 4, we obtain the best known 
single-track Gray codes for 9 I: n  5 15. The parameters of 
these codes are summarized in Table I. For n  = 9,11,13, the 
codes obtained have the highest possible period allowed by 
Lemma 2. 

The cycles of necklaces resulting from Algorithm A cannot 
be used immediately as seeds in Construction B, for we require 
codes with 5’0 = [lo”-l] and S,-l = [1O”-21] (Property B3), 
and having a change in each position (Property B2). In fact, 
the sequences generated above for n = 8,9,10,12,14,15 can 
be ordered to have these properties, while for n = 7 a seed 
was obtained in Section IV. For the other values of n, we 
make a small change in Algorithm A. We  begin our sequence 
of words with 

s; = [O i+lln-i-l], 0 5 i < n - 2 
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