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Quantifying the impact of human visitation in
two cave chambers on Mona Island (Puerto Rico):
implications for archaeological site conservation

Abstract: Recent archaeological research has discovered well preserved historic and pre-Columbian art covering 
numerous walls inside caves on Mona Island. Human visits can pose a serious threat to the long term conservation 
of these fragile engravings and paintings by increasing condensation corrosion rates. The quantification of 
environmental changes to caves related to human visitation is relevant for prediction of condensation corrosion 
processes and cave site management policies. This study addresses the threat of increased condensation corrosion 
to cave art. Data collected in two caves show changes in cave air temperature (T), relative humidity (RH) and CO2 
partial pressure (pCO2) caused by visitation. Based on the environmental observations, cave air exchange times 
and condensation corrosion rates of different visitor group sizes were quantified. The corrosion rates increase with 
the number of visitors and also depend on the chamber ventilation characteristics. Periods of visitation might be 
the only times when condensation corrosion can occur, especially in cave chambers distant from the cave entrance. 
This evidence points out the need to develop a conservation management plan that takes account of visitation 
levels to ensure preservation for future generations.
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Mona Island in the northeastern Caribbean (Fig.1) is one of the most 
cavernous regions in the world (> 200 caves distibuted over just 55km2; 
Frank et al., 1998a). The caves are a main attraction of Mona Island 
and every year approximately 1500 tourists visit the island. Cave visitor 
groups on Mona range from large cohorts of up to 20–30 people, such 
as scout groups who may explore the cave spaces for several hours, to 
smaller groups and individuals, such as hunters during hunting season, 
archaeologists and other scientists. The Puerto Rican Department of 
Natural and Environmental Resources (DNER) controls visitor numbers 
by issuing no more than 100 visitor permits to the island at any one time. 
However, the activities of people in the caves themselves are subject to 
little control due to the number of cave sites, their inaccessibility, and 
the large size of individual caves. 

Indigenous and historic cave art as well as in situ archaeological 
artefacts (Fig.2) have been documented in many of these caves (Dávila 
Dávila, 2003). Current research has so far documented in excess of 30 
caves with extensive pre-Columbian cultural sites, and many more with 
significant historic inscriptions and images spanning the 16th to 19th 
centuries, making this one of the most significant cultural landscapes in 
the Caribbean region (Samson and Cooper 2015; Samson et al., 2015). 

In some caves highly concentrated pre-Columbian wall art is found in 
single chambers (pre-Columbian chambers) of ceremonial use (Samson 
et al., 2013; Dávila Dávila, 2003). Mona Island’s cave art is significant 
in terms of understanding human colonization of the Caribbean, inter-
island interaction, and key historical periods in the region. The caves 
are therefore exceptionally well-preserved time capsules of human 
activity, perhaps unique in the region, and their long term conservation 
is critical.

Worldwide, human visitation poses a threat to the conservation 
of unique archaeological cave sites. Well-studied examples include 
Lascaux Cave in France (Coye, 2011) and Altamira Cave in Spain 
(Sánchez-Moral et al., 1999). Both of these sites demonstrate that 
cave art is highly sensitive to changes in cave atmosphere, and 
that uncontrolled human visitation threatens cave art conservation. 
Quantitative data covering the potential variables affecting cave art 
are needed, to help develop effective conservation and management 
plans. By characterizing the human impact inside a cave prior to its 
exhibition to the general public (Calaforra et al., 2003), this paper 
represents a first step towards the protection of Mona Island’s 
vulnerable cultural heritage.
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Perhaps the greatest threats to Mona Island’s cave art are those 
of direct destruction by the imposition of graffiti (e.g. Fig.2e), and 
of intentional or inadvertent human contact with the cave walls. This 
reflects the fact that the mark-making techniques used in the past 
include painting and drawing on cave surfaces, and incising into soft 
cave-wall deposits that are easily damaged. However, other risks 
include the human introduction of microbial species that colonize the 
cave walls and cause irrevocably harm to the cave art (Dupont et al., 
2007; Cañveras et al., 2001). 

More insidiously, and over greater timespans, human visits are 
known to promote condensation corrosion along cave ceilings and 
walls (de Freitas and Schmekal, 2003; Miedema, 2009), where 
undersaturated waters from the warmer cave atmosphere condense 
along colder cave walls and ceilings, leading to the deterioration of 
carbonate surfaces (Ford and Williams, 1989). On Mona Island, natural 
condensation corrosion has been documented close to cave entrances 
where diurnal temperature variations allow condensation (Tarhule-Lips 
and Ford, 1998). With increasing distance beyond the cave entrance 
natural temperatures show no diurnal variations (Gamble et al., 
2000). In thermally stable cave environments condensation effects are 
essentially absent (Dreybrodt et al., 2005). In such situations conditions 
for condensation might be met only during periods of human visitation, 
because such visits can increase the cave air temperature by several 
degrees (e.g. 3°C was documented by Domínguez-Villar et al., 2010). 
This can threaten the conservation of cave wall art and speleothems 
(Baker and Genty, 1998) and also increase the rate of deterioration of 
iron archaeological artefacts (Fig.2d).

Many caves exhibit seasonal and diurnal pCO2 (carbon dioxide 
partial pressure) variations commonly linked to variations in 
ventilation processes (e.g. Spötl et al., 2005; Baldini et al., 2008; 

Mattey et al., 2010) but the effects of human visits to caves need to 
be examined more closely (Cowan et al., 2013). Cave visitors exhale 
air with a CO2 concentration of 4%, several orders of magnitude 
greater than the concentration in the natural cave atmosphere. 
Consequently, high pCO2 values have been documented in cave 
atmospheres due to human visitation (e.g. Smith et al., 2013). 
High cave atmosphere pCO2 increases the acidity of condensation 
water due to the formation of carbonic acid (Equation 1; Vouve et 
al., 1983; Baldini et al., 2006), which raises the water’s ability to 
dissolve carbonate. During cave visitation it has been documented 
that condensation corrosion increases by up to 78 times (Sánchez-
Moral et al., 1999).

CO2(aq) + H2O(l) → H2CO3(aq)                       (1)

This study focusses upon the impact of human visitation on the 
cave atmosphere inside pre-Columbian chambers and the resulting 
implication for condensation corrosion along the decorated cave walls. 
Changes in the cave air parameters temperature (T), relative  humidity 
(RH) and pCO2 were monitored in two pre-Columbian chambers 
during underground archaeological site studies. To discriminate 
between natural microclimate variability and the visitation-induced 
changes, the cave conditions were recorded with and without 
humans working inside the chambers. The cave microclimate results 
provide a valuable resource to help inform future management of 
the full spectrum of cave visitation on Mona Island, from touristic 
to educational and scientific visits. Such management should help to 
prevent cave art deterioration and the subsequent need for resource-
intensive cave restoration (e.g. Dragovich, 1981; Coye, 2011).

Figure 1: Maps showing the location of Mona Island in the Caribbean (top right), Mona Island with the location of both caves (bottom right) and the cave maps of Cave 
#6 (top left) and Cave #13 (bottom left). The cave atmosphere measurement sites and locations of extensive cave wall art are marked in the cave maps.
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Methods
Site description
Mona Island is a limestone/dolomite island (6km by 11km) located 
in the middle of the 140km-wide Mona Passage between Hispaniola 
and Puerto Rico (Fig.1). It is administered by the Puerto Rico 
Department of Natural and Environmental Resources (DNER). The 
island’s topography is dominated by a nearly horizontal platform 
reaching elevations of up to 80m. Its stratigraphy consists of the Lirio 
Limestone, which overlies the Isla de Mona Dolomite (Frank et al., 
1998b). A Pleistocene reef is exposed along the southern coast and 
the western corner of the island reaching elevations of 6m. At the 
limestone/dolomite contact numerous flank margin caves are found 
along the cliff of the carbonate platform. The caves formed due to 
phreatic dissolution processes along the interface between the fresh 
water lens and salt water when the pre-Pleistocene island was at lower 
elevations. Tectonic uplift exposed the caves above sea level (Mylroie 
et al., 1995). On Mona Island the cave entrances are located along the 
steep cliffs of the carbonate platform. Their cave geometry is diverse; 
large cave chambers near the cliff continue into smaller, commonly 
interconnected, passages a few metres to kilometres in extent – 
including the longest flank margin cave in the world with 21km of 
mapped tunnels (Mylroie et al., 1995).

Since their first occupation of Mona Island, at about 2800 BC (Dávila 
Dávila, 2003), humans have made use of the caves, many of which include 
chambers with well-preserved decorations along their walls. The cave 
chambers vary in size (c. 1m – 80m in diameter and c. 1m – 10m in height) 
and most of them have only one entrance, limiting ventilation.

Ongoing research is discovering new archaeological sites and 
investigating how and when the sites were used (Samson et al., 2015; 
Cooper et al., 2016). The cave-wall decorations reveal that one of the 
periods of most intensive cave use was the pre-Columbian and early 
colonial period (Fig.2a). During this period extensive and elaborate 
modification to the cave walls took place through the application of 
pigments and the extraction of soft cave wall material to create figurative 
(Fig.2c), geometric and meandering designs (“finger-fluting”). Historic 
ship graffiti (Fig.2b), pirate markings and marks and artefacts from an 
intensive period of 19th century phosphorite mining (Fig.2d and Frank 
et al., 1998a) track the more recent history.
Cave monitoring
Two different cave sites were chosen for the monitoring of human 
visitation impact on the cave atmosphere. Within the Corazon del 
Caribe research project (Samson et al., 2015) their cave names have 
been changed to their database IDs, Cave #6 and Cave #13,  to protect 
against abuse of the caves and to allow consistent reference to each cave 
throughout multiple publications. The caves were chosen because they 
are representative of the diverse range of cave systems on Mona Island 
in terms of their accessibility, cave environment and cave art techniques. 
They are flank margin caves located on the western and northern cliffs 
of the island (Fig.1). Cave atmosphere parameters (pCO2, T and RH) 
were logged at 5 to 15 minute intervals using a Vaisala GM 70 with a 
Vaisala GMP222 2000 ppm CO2 probe and a Vaisala HMP75 humidity 
and temperature probe. In both chambers the probes were placed on top 
of a boulder about 1 m above the cave floor, with the sensors extending 
about 20cm into the free cave.

Figure 2:
Examples of cave art, archaeological 
artefacts and recent graffiti in Mona 
Island’s caves:
(A)  pre-Columbian painted figure;
(B)  historic ship;
(C)  finger-fluted cave art;
(D)  nineteenth century iron shovel;
(E)  an example of recent graffiti. 



The cave maps (Fig.1) provide an overview of both the chamber 
geometry and the cave ceiling heights. Cave #6 is difficult to access 
and not often visited. It has one main entrance at its west side and three 
openings in the ceiling in the eastern chamber (sky lights in Fig.1). The 
cave art is painted. Environmental monitoring in this cave took place 
inside the pre-Columbian chamber about 30m away from the nearest 
cave entrance (Map Fig.1). The chamber lies behind a c. 5m-wide 
passage and opens up reaching about 30m in width and 60m in length 
with a maximal ceiling height of 3m.  Measurements were taken on 14 
June 2014 between 10am and 2pm and made on the northern side of the 
cave chamber where ceiling heights reach up to about 2m and the lower 
ceiling and wall surfaces are covered by cave art. Two scientists were 
working in the same chamber from 10am to 11am.

Cave #13, an easily accessible cave on the west side of Mona Island, 
with two main entrances on its western side (Fig.1). Throughout the 
human history of the island and up to the present day it has been heavily 
visited (approximately 1000 visitors per year). In contrast with Cave 
#6, most of its cave art and historic inscriptions were made using finger-
fluting. Its size is more extensive then Cave #6, with ceilings reaching 
heights of up to 9m and cave chambers that extend more than 100m 
from the entrance. Measurements were taken in the main chamber, 
which has ceiling heights of up to 7m and is about 90m from both 
exits. The measurement site was located 10m in front of a small pre-
Columbian chamber (X on the east side in Fig.1), which is extensively 
decorated with cave wall art. Measurements took place on 16 June 2014 
between 9am and 5pm. Two scientists worked inside the pre-Columbian 
chamber from 9am to Noon. Cave measurements were also taken from 
10pm on 17 June 2014  until 7pm on 18 June 2014 to record natural 
cave environment data. During this period no visitors were present in 
the cave except to place the instrument and change the batteries.
Chamber air exchange time analysis
Human respiration caused a pCO2 peak in both cave chambers. The 
monitoring results show that the CO2 peak decayed exponentially 
after the visitation ended until the background value was reached. 
An exponential decay function was used to estimate the air exchange 
time for each cave chamber (e.g. Frisia et al., 2011). This was done by 
simplifying the ventilation process to a linear time invariant system in 
which the cave atmosphere responded to a step change in CO2 input. 
During visitation respiratory CO2 was exhaled into the cave atmosphere. 
When visitors left the chamber, the respiratory CO2 source stopped. 
The estimation of air exchange times is underlain by two assumptions. 
Firstly, the CO2 input into the cave by processes other than human 
visitation was constant throughout the monitored period and, secondly, 
cave ventilation linked with the outside air was the only way that CO2 
was removed from the cave. Equation 2 was used to calculate the air 
exchange time:

pCO2(t) = {pCO2
i  − pCO2

f    } *e−t /τ + pCO2
f                    (2)

Where: 
pCO2(t)  = pCO2 at time t [ppm]
pCO2

i = initial pCO2 [ppm]
pCO2

f = final pCO2 [ppm]
τ = system time constant [minutes]
t = time [minutes]

Results
During human visitation pCO2 values increased in both caves. In Cave 
#6 two cave visitors increased pCO2 by 50 ppm compared to natural 
conditions, whereas in Cave #13 two cave visitors increased the pCO2 
by 100 ppm (Fig.3). In both cave sites the pCO2 dropped to natural 
background values in less than one hour after cave visitation.

Atmospheric pCO2 values (400 ppm) in Cave #6 were recorded 
before and after chamber visitation (Fig.3a). During visitation it 
increased to 450 ppm. The highest T occurred at the beginning of the 
measurement period. Then T dropped to 24.6°C and rose to 26.9°C in 
the early afternoon. RH values in Cave #6 ranged from 78% to 89%.

Measurements of the natural conditions without continuous 
cave visitation in Cave #13 (Log 2 in Fig.3b) showed pCO2 values slightly 
above atmospheric values (430 ppm). During visitation and archaeological 
work in the chamber pCO2 increase by up to 100 ppm compared to the 
natural conditions. Natural temperatures were between 24.2 and 24.4°C 
and natural relative humidity values were always saturated (about 100%). 
During cave chamber visitation, T increased slightly to 24.6°C and RH 
values decreased slightly (Log 1 in Fig.3b). The natural conditions (Log 
2 in Fig.3b) also showed two disturbances in the T and RH logs. They 
correlate to brief cave visits to start the measurement and change the 
batteries (vertical lines in Fig.3b). The disturbances seem to be caused 
by the brief visits. T and RH are related by Equation 3 (Lawrence, 2005). 
The rise in T explains the observed RH decrease below 100% because air 
at higher temperatures can hold more water vapour.

RH≈100 − 5*(T − Td )                           (3)
T is the measured temperature and Td the dew point temperature in 
°C. All measurements in Cave #13 during the undisturbed natural 
cycle showed RH values around 100%. Thus, the undisturbed cave 
temperature is equal to Td. Calculating RH using the increased T during 
short visits explains the measured decrease in RH. It also explains the 
slight decrease in RH during the archaeological work in the chamber 
(Log 1 in Fig.3b). 

Figure 3:
Results of cave atmospheric logging 
in cave chambers in Cave #6 (a) and 
Cave #13 (b), top row shows pCO2 
(top), middle row shows T and bottom 
row shows RH. Note: The time scale 
has a higher resolution for Cave #6. 
In Cave #6 logging took place on 
14 June 2014. Two archaeologists 
worked between 10am and 11am 
in the pre-Columbian chamber 
(highlighted period). In Cave #13 
Log 1 was recorded on 16 June  
2014. It recorded the micro climate 
change while two archaeologists 
worked close to the data logger 
from 9am to noon (highlighted 
period). Log 2 recorded natural 
cave chamber conditions without 
anyone working inside the cave. 
It was recorded between 17 and 
18 June 2014. Both logs (1 and 2) 
are plotted on the same time scale 
showing the local 24-hr time of the 
respective day. During the recording 
of Log 2 two people were in the 
cave to start the measurement and 
change the batteries. The short visits 
are marked by vertical lines. The 
black dotted curves show the fitted 
exponential pCO2 decline after work 
ended inside the pre-Columbian 
chamber in both caves.

82

Cave and Karst Science 43(2), 79 – 85, 2016 Mona Island (Puerto Rico): implications for archaeological site conservation



In estimating the air exchange time, the moment that respiratory 
CO2 input ceased in the cave was chosen as the start point of the 
fitted curve (t = 0 in Equation 2). The highest pCO2 reading inside 
the chamber (450 ppm in Cave #6 and 530 ppm in Cave #13) was 
set as the initial partial pressure of CO2 ( pCO2

i ). In Cave #13 two 
short-term spike maxima were recorded (Fig.3b). These might have 
been caused due to work taking place in close proximity to the data 
logger. Use of this high value was chosen because it is likely that 
visitors standing in close proximity to cave-wall art cause similar 
increases in pCO2. 

In Cave #6 the final pCO2 ( pCO2
f ) was set to 400 ppm, which 

was the value recorded inside the cave chamber before the work 
began and after the respiratory CO2 peak declined (Fig.3a). In Cave 
#13 it was set to 430 ppm, which represents natural cave conditions 
without human visitation and also the CO2 concentration before and 
after the respiratory CO2 injection (Fig.3b).

The time constant τ in Equation 2 represents the time it takes to 
exchange the chamber air volume once with the air outside the cave 
or with the air in adjacent chambers (cave air exchange time). It was 
estimated by way of manual curve-fitting (Fig.3) to the measured 
CO2 decline for Cave #6 and Cave #13 using the initial and final 
pCO2 values mentioned above in Equation 2. The best fit indicates 
a time constant τ of about 15 minutes for Cave #13 and about 52 
minutes for Cave #6. 

Condensation corrosion during visitation
In cave chambers where stable cave atmospheric conditions exist, 
human cave visitation might be the only time when conditions for 
condensation and, consequently, condensation corrosion are met. 
Condensation corrosion erodes cave walls when water undersaturated 
with respect to carbonate condenses on cave wall and ceiling surfaces. 
On Mona Island, diurnal temperature fluctuations – primarily in the 
entrance zones of caves – lead to natural condensation corrosion 
(Tarhule-Lips and Ford, 1998).

Results during the current study show that human cave 
visitation increases T and pCO2 in the cave air. Human visits favour 
condensation corrosion due to the higher temperatures of the cave 
atmosphere compared to the cave walls. Higher pCO2 levels cause 
higher acidity of the condensed water along the cave walls and higher 
temperatures support faster reaction rates (increased kinetic constant 
α; Equation 6), increasing the carbonate dissolution rate during the 
period of visitation.

Theoretical carbonate dissolution rates were calculated for 
conditions with and without cave visitation, using well-established 
relationships to T and to pCO2. The equilibrium calcium-ion 
concentration (ceq) is a function of both of the above parameters, and 
limits the theoretical dissolution rate R (Buhmann and Dreybrodt, 
1985). A positive R value expresses dissolution and loss of carbonate 
from the cave wall surface.

R = α*(ceq− c)  mmol*cm−2*s−1                  (4)
Where R is given in mmol*cm−2*s−1, α is the kinetic constant in 
cm*s−1, c is the Ca-ion concentration in the water film, which is 0 
for condensed water on the cave walls, and ceq is the equilibrium 
concentration of calcium in mmol*cm−3. R can be converted into 
dissolution rates (cm yr−1) using the following equation (Dreybrodt, 
1988):

R = 1.174*106 * α * (ceq)     cm*yr−1             (5)
The kinetic constant α is a function of T. Between 0°C and 30°C 
it can be estimated using the following equation (Romanov et al., 
2008):

α = (0.52+0.04*T+0.004T2)*10−5     cm*s−1          (6)
Using a transfer function derived by Baker et al. (2014) ceq can be 
calculated from cave T and pCO2. Baker et al. (2014) estimate the 
apparent Ca concentration (capp), which is the concentration above 
which carbonate precipitation occurs. Capp is ceq multiplied by 1.2 
(Kaufmann, 2003). Thus, ceq can be calculated using the pCO2 and 
T values measured in the cave. Note that Baker’s equation and 
Equation 7 use the pCO2 unit atm:

ceq= 5/6*capp     mmol*l−1

= 5/12*((5.873*pCO2
0.2526)+(−0.0167*T+1.5146))            (7)

A pCO2 rise of 100 ppm and a T increase of 0.3°C were detected in 
Cave #13 during visitation. In Cave #6, pCO2 rose by 50 ppm but a T 
increase co-occurring with the pCO2 peak was not detected. Temperature 
is highest at the beginning of the log, which could be due to strong 
influence of outside weather overwhelming the human temperature signal 
in Cave #6. To allow for the uncertainty related to temperature increase 
during human visits in Cave #6, dissolution rates were calculated for two 
scenarios: in Scenario 1 the cave temperature remained constant during 
visitation, whereas in Scenario 2 the temperature rise was similar to that 
observed in Cave #13. The parameters and calculated dissolution rates 
for the natural cave condition (0 visitors) and the cave condition during 
visitation (2 visitors) are shown in Table 1 for both caves. Note that it 
is likely that condensation corrosion occurs only when people visit the 
cave. Thus the dissolution rates were expressed as mm/hour because 
dissolution caused by visitation will not be a constant process over long 
time frames. Mona Island does not have large tourist numbers due to 
the island’s visitation policy. Realistically for present island visitation a 
group of 30 visitors might enter an accessible pre-Columbian chamber 
(e.g. Cave #13) once per week causing a cave environmental anomaly 
for about 3 hours. Thus the visitor induced condensation corrosion only 
occurs 3 out of 168 hours or 2% of the time in accessible chambers. 
Table 1 shows the estimated dissolution rate due to visitation RVisitation 
in mm/year.

For both caves, dissolution rates were calculated for two visitors 
based on the monitoring results (Table 1), which were also extrapolated 
to estimate the possible effect of large visitor groups. Respiratory CO2 
emission values are directly proportional to the number of visitors 
(Fernández et al., 1986; Faimon et al., 2006). Cave temperatures rise 
during human visits because human body temperature is several degrees 
above cave temperature, and heat is radiated into the surrounding air. 
For relatively small temperature ranges the heat capacity of a system is 
constant and the temperature change is proportional to the heat source 
(number of visitors). The results of the dissolution rate calculation for 
visitor groups up to 30 people are plotted in Figure 4.

#
visitors

pCO2 T α ceq R R Visitation

(ppm) (°C) (cm/s) (mmol/cm3) (mm/h) (mm/yr)
Cave #13

0 430 24.3 3.85E-05 8.13E-07 4.20E-05 7.36E-03

2 530 24.6 3.92E-05 8.24E-07 4.34E-05 7.60E-03
Cave #6

Scenario 1: no temperature increase in pre-Columbian chamber

0 400 26.5 4.39E-05 7.86E-07 4.62E-05 8.10E-03

2 450 26.5 4.39E-05 7.94E-07 4.68E-05 8.20E-03

Scenario 2: similar temperature increase as observed in Cave#13

0 400 26.5 4.39E-05 7.86E-07 4.62E-05 8.10E-03

2 450 26.8 4.46E-05 7.94E-07 4.75E-05 8.32E-03
Table 1: Cave measurements (pCO2 and T) used to calculate kinetic constant α, 
Ca equilibrium concentration ceq , dissolution rate R and dissolution per year 
(RVisitation ) assuming that weekly cave visits cause conditions for condensation 
corrosion during 2% of the year. See text for details.

Figure 4: Theoretical carbonate dissolution rate as a function of visitor numbers. 
The change in cave atmosphere has been measured for two visitors in each cave 
and was extrapolated for larger visitor groups. See text for details.
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Under natural conditions (0 visitors) the carbonate dissolution 
rates due to condensation of water along cave walls are approximately 
4.20x10-5 mm*h-1 for Cave #13 and 4.62x10-5 mm*h-1 for Cave #6. 
Natural conditions for condensation corrosion occur only near the 
cave entrances, and conditions for condensation corrosion probably 
only occur in cave chambers during times of cave visitation. In Cave 
#13, a group of 30 visitors would increase the carbonate dissolution 
rate to about 6.25x10-5 mm*h-1 (~48%). In Cave #6, 30 visitors would 
increase the theoretical dissolution rate to about 5.53x10-5 mm*h-1 

(~25% increase) for Scenario 1 (visitation: no temperature rise) and 
to 6.55x10-5 mm*h-1 (~50% increase) for Scenario 2 (visitation: 
temperature rise as in Cave #13). 

Discussion
Cave atmospheric changes similar to those found on Mona Island 
have been observed in other cave settings. In Ballynamintra Cave, 
Ireland, two cave visitors increased the temperature by 0.3°C (Baldini 
et al., 2006) and in Ingleborough Show Cave, UK, 30 visitors increase 
the cave temperature by 0.12°C in just 5 minutes (Smith et al., 2013). 
A pCO2 increase due to visitors has been monitored in Ingleborough 
Show Cave and the Grotta di Ernesto, Italy. In both caves large visitor 
groups raise the cave pCO2 by up to 500 ppm (Frisia et al., 2011; 
Smith et al., 2013).

Carbonate dissolution rates on Mona Island increased due to 
higher T and pCO2 levels. For 30 visitors the theoretical dissolution 
rates are greater in Cave #6’s chamber than in Cave #13 (assuming 
a similar temperature rise in both caves). This is due to the higher 
absolute temperature in Cave #6 increasing the dissolution process 
via the temperature dependent kinetic constant. Both chambers have 
fast air exchange times (15 and 52 minutes for chambers in Cave #13 
and Cave #6, respectively). In Cave #6 the monitored chamber is 
located between the main entrance to the west and sky lights in the 
cave ceiling to the east (Fig.1). Here the air exchange time is greater 
than in the deeper chamber in Cave #13. This result is unexpected 
because the close proximity to several openings should promote more 
vigorous cave ventilation. It seems likely that this result arises of 
the fast decline of the maximum pCO2 peak in Cave #13 (Fig.3b). 
Probably the archaeological work took place in close proximity to the 
measurement site which could have formed a localized high pCO2 
air-volume causing the peak and a quick dispersal into the chamber 
could be responsible for the fast decline in pCO2. Unexpectedly, the 
temperature declined during the work inside the chamber in Cave #6. 
No weather station data are currently available from Mona Island to 
reconstruct details of outside weather conditions during periods of 
cave monitoring, but in Cave #6 the outside weather seems likely to 
influence the cave chamber’s interior. The fast air exchange time, no 
detectable temperature rise during visitation and the atmospheric pCO2 
values measured pre- and post-visitation indicate a close connection 
between outside weather and cave atmosphere that seems to overshadow 
visitation-induced temperature changes in Cave #6. In Scenario 1 (no 
temperature rise for Cave #6) the theoretical condensation corrosion 
rate for 30 visitors is smaller than in Cave #13 (Fig.4). The latter case 
is a result of higher pCO2 in combination with a temperature increase 
in Cave #13. In Scenario 2 (similar temperature rise in Cave #6) the 
theoretical condensation corrosion rates are greater in Cave #6, linked 
primarily to the higher absolute temperatures in the cave.

Theoretical dissolution rates when a group of 30 visitors is present 
are up to 50% higher than compared to natural conditions. These 
theoretical dissolution rates represent maximum values, because 
they are based on an assumption that water condenses on the cave 
walls constantly. Condensation occurs when the cave wall is colder 
than the cave air (Thompson, 1978). Naturally, this occurs mostly 
within the first 100m of the cave, near the entrances, where external 
weather changes influence the cave atmosphere (Tarhule-Lips and 
Ford, 1998).

 The presence of large visitor groups might be the only scenario in 
which condensation occurs in deep cave chambers. Across the island, 
the majority of the cave art is located in deep chambers away from 
cave entrances. Annual condensation corrosion rates were measured 
experimentally by Tarhule-Lips and Ford (1998) by monitoring the 
dissolution of gypsum tablets up to 100m inside a cave on Mona 
Island. They found mean rates of 6.7x10-6 mm*h-1. Theoretical rates 
during the present study are more than one order of magnitude greater. 
This discrepancy between experimental results and theoretical rates 
is explicable for two reasons: Firstly, condensation corrosion occurs 
only when the conditions for condensation on the cave walls are met. 

Under natural conditions the diurnal temperature cycle permits 
periodic condensation only when the cave air is warmer. Secondly, 
the gypsum tablets reach thermal equilibrium after a time span of 
a few minutes (Dreybrodt et al., 2005). Once a gypsum tablet has 
reached the cave air temperature no further condensation will occur 
on it, whereas cave walls dissipate the excess heat from condensation, 
and the condensation corrosion process on cave walls will persist for 
longer and dissolve more carbonate.

The estimated chamber air exchange times are less than one hour, 
and human cave air alterations fall back to natural values in one to two 
hours. Thus, a group visiting a cave chamber for one hour may cause 
condensation conditions for a total of about three hours. Considering 
the visitor numbers of cave systems on Mona Island, the condensation 
corrosion rate due to visitation has been estimated to be up to 8.3x10-3 
mm*yr-1 (Table 1). Finger fluted cave art on Mona Island has a relief 
of less than 1mm to a maximum of c. 3mm. Thus, cave tourism over a 
span of decades, even of a casual and unregulated type, could pose a 
serious threat to cave art conservation.

Mona Island’s caves are resources of outstanding natural and cultural 
beauty, as well as of great interest to a wide scientific community. Quite 
understandably they are one of the main attractions of the island. It is 
possible that the unique archaeology in the caves has only survived 
thanks to the island’s remoteness, uninhabited status and the careful 
planning of the Puerto Rican authorities in safeguarding visitor 
numbers. Cave art in other well-known locations across the Caribbean 
has been damaged by visitors and their actions (Hayward et al., 2013). 
Continued and future preservation depends upon institution of a 
conservation management plan that is sustainable in terms of resources 
and long-term planning, and flexible enough to allow for future access 
without causing a negative impact on the resources.

Perhaps, the biggest threat to the cave archaeology on Mona Island 
is inadvertent or deliberate contact with the cave walls (brushing past 
soft finger-fluting or deliberate graffiti; e.g. Fig.2e). Nevertheless, it is 
important to quantify threats posed by all aspects of human exposure, 
and also take conservation measures that will tackle sources of risk. 
Continued monitoring of the impact of human visitation in caves with 
cave art and with public access across the island, such as presented in this 
study, would be one way of quantifying cave microclimate alterations 
during visitation. Additional corrosion experiments in frequently visited 
cave chambers may verify the accuracy of the condensation corrosion 
rates estimated here are. Furthermore the provision of public information 
and raising awareness by studies such as these provide the best way of 
developing a comprehensive conservation management plan.

Conclusion
Observations of human-induced changes to cave microclimate on 
Mona Island showed that temperature and pCO2 increase during 
human visits. Human impact promotes condensation corrosion, posing 
a serious threat to cave art conservation in the long term (decadal to 
centennial timescales). In the short term, Mona Island’s remote location 
and current management regime ensures that visitor numbers remain 
low and are predictable, and therefore the risk of human-induced 
condensation corrosion is low. Changes in Mona Island’s protected 
status could potentially pose a serious threat to this site however. In 
the short term higher risks are intentional or accidental damage related 
to imposition of graffiti or unregulated behaviour in the caves.

Monitoring the human impact upon archaeological sites will help to 
ensure a better understanding of risk factors and will form an integral 
part of a robust management plan for these vulnerable sites.
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